Abstract
Let $A$ be an abelian variety. We introduce $A$-equivariant Grothendieck rings and $A$-equivariant motivic Hall algebras, and endow them with natural integration maps to the ring of dual numbers. The construction allows a systematic treatment of reduced Donaldson-Thomas invariants by Hall algebra techniques. We calculate reduced Donaldson-Thomas invariants for $\mathrm{K3} \times E$ and abelian threefolds for several imprimitive curve classes. This verifies (in special cases) multiple cover formulas conjectured by Oberdieck-Pandharipande and Bryan-Oberdieck-Pandharipande-Yin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.