Abstract

A reduction in the amount of UV-induced unscheduled DNA synthesis (UDS), and reduced cell survival and host-cell reactivation against UV exposure in Hutchinson-Gilford progeria syndrome cell strains were shown. UV-induced UDS in 4 progeria cell strains was 33-50% of the normal level. A similar reduction in the UV-induced UDS in normal cells was caused by gamma-ray irradiation to the cells before UV irradiation. The dose of gamma-rays required to cause a reduction in UDS of normal cells to the level of progeria cells was 40 Gy and the reduction was reversible after 2 days. In progeria cells, gamma-ray irradiation further reduced UDS with a lower gamma-ray dose required than in normal cells, and the reduction was also reversible but with less relative recovery than in normal cells. The presence of a 'built-in' defect in progeria cells responsible for the reduced DNA-repair capacity was suggested, and such defect may share a common mechanism with the reduction of UV-induced UDS in normal cells caused by gamma-ray irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.