Abstract
Background and purposeStandard treatment of high grade gliomas includes gross tumour resection followed by radio(chemo)therapy. Radiotherapy inevitably leads to irradiation of normal brain tissue. The goal of this prospective, longitudinal study was to use MRI to quantify normal appearing white and grey matter changes following radiation treatment as a function of dose and time after radiotherapy. Materials and methodsPre-radiotherapy (proton or photon therapy) MRI and follow-up MRIs collected in 3 monthly intervals thereafter were analysed for 22 glioma patients and included diffusion tensor imaging, quantitative T1, T2* and proton density mapping. Abnormal tissue was excluded from analysis. MR signal changes were quantified within different dose bin regions for grey and white matter and subsequently for whole brain white matter. ResultsWe found significant reductions in mean diffusivity, radial diffusivity, axial diffusivity and T2* in normal appearing white matter regions receiving a radiation dose as low as 10–20 Gy within the observational period of up to 18 months. The magnitude of these changes increased with the received radiation dose and progressed with time after radiotherapy. Whole brain white matter also showed a significant reduction in radial diffusivity as a function of radiation dose and time after radiotherapy. No significant changes were observed in grey matter. ConclusionDiffusion tensor imaging and T2* imaging revealed normal appearing white matter changes following radiation treatment. The changes were dose dependant and progressed over time. Further work is needed to understand the underlying tissue changes and to correlate the observed diffusion changes with late brain malfunctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.