Abstract

The recently proposed multireference adiabatic connection (AC) formalism [Pernal, Phys. Rev. Lett. 120, 013001 (2018)] is applied to recover dynamic electron correlation effects lacking in variational two-electron reduced density matrix (v2RDM)-driven complete active space self-consistent field theory (CASSCF). The AC approach is validated by computing potential energy curves for the dissociation of molecular nitrogen and the symmetric double dissociation of H2O while enforcing two sets of approximate N-representability conditions in the underlying v2RDM-driven CASSCF calculations (either two-particle or two-particle plus partial three-particle conditions). The AC yields smaller absolute errors than second-order N-electron perturbation theory (NEVPT2) at all molecular geometries for both sets of the N-representability conditions considered. The efficacy of the approach for thermochemistry is also assessed for a set of 31 small-molecule reactions. When imposing partial three-particle N-representability conditions, mean and maximum unsigned errors in reaction energies from the AC are superior to those from NEVPT2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.