Abstract

Based on a generalization of Hohenberg-Kohn's theorem, we propose a ground state theory for bosonic quantum systems. Since it involves the one-particle reduced density matrix γ as a variable but still recovers quantum correlations in an exact way it is particularly well suited for the accurate description of Bose-Einstein condensates. As a proof of principle we study the building block of optical lattices. The solution of the underlying v-representability problem is found and its peculiar form identifies the constrained search formalism as the ideal starting point for constructing accurate functional approximations: The exact functionals F[γ] for this N-boson Hubbard dimer and general Bogoliubov-approximated systems are determined. For Bose-Einstein condensates with N_{BEC}≈N condensed bosons, the respective gradient forces are found to diverge, ∇_{γ}F∝1/sqrt[1-N_{BEC}/N], providing a comprehensive explanation for the absence of complete condensation in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call