Abstract

Considerable efforts have been devoted to optimizing and controlling the morphology and electronic properties of lead halide perovskites. The defect density of a perovskite layer strongly depends on the processing conditions. Consequently, the fabrication process of high-quality films is often complex, and reproducibility is a challenge. In this work, we present a methylamine gas-based method to recrystallize perovskite layers of any given quality in a controlled way, leading to millimeter-sized domains. Crystallinity significantly increases upon methylamine treatment, and crystal growth follows a preferred orientation. Photoluminescence- and space-charge limited current measurements show that the trap density halves after recrystallization. Conductive atomic force microscopy measurements show a higher surface conductivity and an improved spatial homogeneity after methylamine treatment. When applied in photodetectors, the improved film quality of the recrystallized films leads to increased detectivities of ≈4 × 1011 Jones compared to 3 × 109 Jones of a reference device. The response time falls from 0.1 to 10−5 s upon methylamine treatment. Our work, thus, presents a promising route to fabricating reproducible, high-quality perovskite films through well-controllable recrystallization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.