Abstract

Billey, Jockusch, and Stanley characterized 321-avoiding permutations by a property of their reduced decompositions. This paper generalizes that result with a detailed study of permutations via their reduced decompositions and the notion of pattern containment. These techniques are used to prove a new characterization of vexillary permutations in terms of their principal dual order ideals in a particular poset. Additionally, the combined frameworks yield several new results about the commutation classes of a permutation. In particular, these describe structural aspects of the corresponding graph of the classes and the zonotopal tilings of a polygon defined by Elnitsky that is associated with the permutation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.