Abstract

Control scheme design based on surface electromyography (sEMG) pattern recognition has been the focus of much research on a myoelectric prosthesis (MP) technology. Due to inherent nonstationarity in sEMG signals, prosthesis systems may need to be recalibrated day after day in daily use applications; thereby, hindering MP usability. In order to reduce the recalibration time in the subsequent days following the initial training, we propose a domain adaptation (DA) framework, which automatically reuses the models trained in earlier days as input for two baseline classifiers: a polynomial classifier (PC) and a linear discriminant analysis (LDA). Two novel algorithms of DA are introduced, one for PC and the other one for LDA. Five intact-limbed subjects and two transradial-amputee subjects participated in an experiment lasting ten days, to simulate the application of a MP over multiple days. The experiment results of four methods were compared: PC-DA (PC with DA), PC-BL (baseline PC), LDA-DA (LDA with DA), and LDA-BL (baseline LDA). In a new day, the DA methods reuse nine pretrained models, which were calibrated by 40 s training data per class in nine previous days. We show that the proposed DA methods significantly outperform nonadaptive baseline methods. The improvement in classification accuracy ranges from 5.49% to 28.48%, when the recording time per class is 2 s. For example, the average classification rates of PC-BL and PC-DA are 83.70% and 92.99%, respectively, for intact-limbed subjects with a nine-motions classification task. These results indicate that DA has the potential to improve the usability of MPs based on pattern recognition, by reducing the calibration time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.