Abstract

BackgroundLow food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal's ability to cope with cold challenges.MethodsEighteen pregnant ewes with a BCS of 2.7±0.1 were fed to attain low (LBC: BCS2.3±0.1), medium (MBC: BCS3.2±0.2) or high BCS (HBC: BCS3.6±0.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.4±0.1°C) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase.ResultsDuring the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (P<0.01, P<0.01 and P<0.05, respectively) and HBC ewes (P<0.05, P<0.01 and P<0.01, respectively). During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P<0.05) and HBC ewes (P<0.05), and FFA and insulin concentrations were lower in LBC than HBC ewes (P<0.05 and P<0.001, respectively). Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P<0.01). Glucose concentrations and internal body temperature (Tcore) increased in all treatments, although peak Tcore tended to be higher in HBC ewes (P<0.1). During the recovery phase, T4 concentrations were lower in LBC ewes (P<0.05).ConclusionEven though all ewes were able to increase Tcore and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced.

Highlights

  • Grazing sheep in temperate regions such as New Zealand can face a number of environmental challenges simultaneously

  • There was no difference in Body Condition Score (BCS) and live weight (LW) between MBC and high BCS (HBC) ewes

  • Plasma free fatty acids (FFA) concentrations were higher in LBC compared to MBC (P,0.05) and HBC ewes (P,0.01), while there was no difference between MBC and HBC ewes (Figure 3B)

Read more

Summary

Introduction

Grazing sheep in temperate regions such as New Zealand can face a number of environmental challenges simultaneously. Common challenges met by pregnant sheep are long-term undernutrition leading to a loss of body reserves, due to poor pasture quality and growth during the winter months and lack of adequate nutritional supplementation. Such winter undernutrition periods often occur simultaneously with low temperatures, high rainfall and strong winds. Certain agricultural practices may further exacerbate the environmental burden It is common practice in New Zealand to shear ewes in mid-pregnancy (which coincides with mid-winter) in order to attempt to increase the birth weights of the lambs [1], which could potentially reduce the pregnant sheep’s ability to cope with cold challenges. We assess whether BCS affects a pregnant animal’s ability to cope with cold challenges

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call