Abstract

In this paper, we propose a new dynamic non-linear MISO system model using discrete-time Volterra series. To provide a reduced complexity model, each Volterra kernel is expanded on independent generalised orthonormal bases (GOBs) associated to the inputs to develop a new black-box non-linear MISO-GOB-Volterra model. However, this reduction is ensured once the poles characterising each independent generalised orthonormal basis (GOB) are set to their optimal values. For the selection of optimal GOBs poles, we develop two new general approaches based on Gauss-Newton and exhaustive algorithms, the performances of which are illustrated and compared in simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.