Abstract

Reed-Solomon (RS) codes are one of the most widely utilized block error-correcting codes in modern communication and computer systems. Compared to hard-decision decoding, soft-decision decoding offers considerably higher error-correcting capability. The Koetter-Vardy (KV) soft-decision decoding algorithm can achieve substantial coding gain, while maintaining a complexity polynomial with respect to the code word length. In the KV algorithm, the interpolation step dominates the decoding complexity. A reduced complexity interpolation architecture is proposed in this paper by eliminating the polynomial updating corresponding to zero discrepancy coefficients in this step. Using this architecture, an area reduction of 27% can be achieved over prior efforts for the interpolation step of a typical (255, 239) RS code, while the interpolation latency remains the same

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.