Abstract

Cocaine generates drug-seeking behavior by creating long-lasting changes in the reward pathway. The role of the growth factor, brain-derived neurotrophic factor (BDNF) in facilitating these changes was investigated in the present report with a genetic rat model. Using conditioned place preference, the current study investigated the hypothesis that a partial knockout of the BDNF gene in rats (BDNF+/−) would attenuate the rewarding effects of cocaine. Wildtype rats exposed to cocaine exhibited normal cocaine-seeking responses one day after conditioning and cocaine-seeking behavior was reinstated with drug priming following drug abstinence. In contrast, BDNF+/− rats did not show cocaine-seeking behavior one day after conditioning, nor did they respond to drug priming. A median split of rats based on BDNF levels in sera collected prior to behavioral procedures revealed that wildtype rats with high BDNF levels showed stronger conditioned place preference and reinstatement to cocaine. Together, the results support the hypothesis that a partial knockout of the BDNF gene attenuates the rewarding properties of cocaine. Additionally, individual differences in BDNF levels may predict future cocaine-seeking behavior. An underlying mechanism of these effects may be a reduction of the amount of synaptic changes made in the reward pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call