Abstract

A hybrid approach is proposed to develop reduced kinetic models for complex engine-relevant fuels. The reduced mechanism is composed of a core submechanism including C 0 –C 4 chemistry, ethanol chemistry, and NO x chemistry and a fuel-dependent submechanism. The fuel-dependent submechanism consists of three species and ten reactions describing both the low and high-temperature fuel decomposition pathways. Calibrations for these reactions can be made for single component and multicomponent mixtures using experimental targets or results from detailed kinetic mechanisms. In the present study, the methodology is applied to the combustion of gasoline surrogates. Reduced mechanisms are calibrated for primary reference fuels and multicomponent mixtures at engine-relevant pressures. The reduced mechanisms capture the low-temperature heat release and negative temperature coefficient (NTC) behavior, which are important to simulations of internal combustion engine performance. The mechanisms are very compact in size and can be easily calibrated for multicomponent mixtures without any detailed knowledge of the chemistry of the fuel components, making them well suited for CFD simulations of new fuel blends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.