Abstract

An efficient photoelectrode is fabricated by sequentially assembling 2.5 nm and 3.5 nm CdSe quantum dots (QDs) onto a TiO2 film. As revealed by UV-vis absorption spectroscopy, two sizes of CdSe QD can be effectively adsorbed on the TiO2 film. With a broader light absorption range and better coverage of CdSe QDs on the TiO2 film, a power conversion efficiency of 1.26% has been achieved for the TiO2/CdSe QD (2.5 nm)/CdSe QD (3.5 nm) cell under the illumination of one Sun (AM 1.5G, 100 mW cm(-2)). Electrochemical impedance spectroscopy shows that the electron lifetime for the device based on TiO2/CdSe QD (2.5 nm)/CdSe QD (3.5 nm) is longer than that for devices based on TiO2/CdSe QD (2.5 nm) and TiO2/CdSe QD (3.5 nm), indicating that the charge recombination at the interface is reduced by sensitizing with two kinds of CdSe QDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.