Abstract
To investigate the role of tumor suppressors BRCA1 and p53 proteins in human breast tumorigenesis, we transformed immortalized human mammary epithelial cells, MCF10A, with or without BRCA1/p53 gene-specific knockdowns. Stable knockdown of BRCA1 alone in MCF10A cells led to centrosome amplification, impaired p53 protein stability, increased sensitivity towards DNA-damaging agents, defective chromosomal condensation at mitosis and elevated protein levels of cyclin D1 and c-myc. While over-expression of mutant H-Ras transformed MCF10A cells, depletion of BRCA1 dramatically enhanced the in vivo tumorigenesis that was associated with higher levels of VEGF, enhanced vascularization and less apoptosis in the BRCA1-deficient Ras-transformed tumors. The Ras-transformed BRCA1-deficient tumors exhibited features of the epithelial-to-mesenchymal transition, appeared to secrete matrix metalloproteases as visualized by in vivo bio-imaging of tumors using fluorescent probe MMP680, and were locally metastatic to lymph nodes. Our results suggest that loss of BRCA1 pathway function may contribute to the aggressiveness of Ras-MAPK driven human breast cancer with associated increase in levels of cyclin D1 and c-myc, enhanced MAPK activity, angiogenic potential & invasiveness. This mammary xenograft tumor model may be useful as a tool to understand human breast tumor angiogenesis and metastasis, as well as to test candidate therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.