Abstract
BackgroundVolume substitution remains subject of controversy in the light of effusions and oedema potentially complicating this highly febrile disease. Understanding the role of myocardial and circulatory function appears to be essential for clinical management. In the present study, cardiac function and cardiac proteins have been assessed and correlated with parasitological and immunologic parameters in patients with imported Plasmodium falciparum malaria.MethodsIn a prospective case-control study, 28 patients with uncomplicated and complicated P. falciparum malaria were included and findings were compared with 26 healthy controls. Cardiac function parameters were assessed by an innovative non-invasive method based on the re-breathing technique. In addition, cardiac enzymes and pro- and anti-inflammatory cytokines were measured and assessed with respect to clinical symptoms and conditions of malaria.ResultsCardiac index (CI) as a measurement of cardiac output (CO) was 21% lower in malaria patients than in healthy controls (2.7 l/min/m2 versus 3.4 l/min/m2; P < 0.001). In contrast, systemic vascular resistance index (SVRI) was increased by 29% (32.6 mmHg⋅m2/(l/min) versus 23.2 mmHg⋅m2/(l/min); P < 0.001). This correlated with increased cardiac proteins in patients versus controls: pro-BNP 139.3 pg/ml versus 60.4 pg/ml (P = 0.03), myoglobin 43.6 μg/l versus 27.8 μg/l (P = < 0.001). All measured cytokines were significantly increased in patients with malaria. CI, SVRI as well as cytokine levels did not correlate with blood parasite density.ConclusionsThe results support previous reports suggesting impaired cardiac function contributing to clinical manifestations in P. falciparum malaria. Findings may be relevant for fluid management and should be further explored in endemic regions.
Highlights
Volume substitution remains subject of controversy in the light of effusions and oedema potentially complicating this highly febrile disease
Baseline characteristics Cardiac function, serological and parasitological parameters were investigated in 28 patients with imported P. falciparum malaria
All patients originating from endemic countries had lived in Germany for at least two years prior to recent travel to endemic regions
Summary
Volume substitution remains subject of controversy in the light of effusions and oedema potentially complicating this highly febrile disease. Circulatory collapse and symptoms associated with impaired hemodynamic function are characteristics of complicated Plasmodium falciparum malaria [1]. While impaired cardiac function has long been established as a key component of bacterial sepsis and septic shock, the role of the heart in severe malaria has only recently been started to be further explored. In sepsis, reduced pre-load, myocardial suppression as well as reduced after-load contribute to hyperdynamic but insufficient cardiac function resulting in tachycardia and hypotension. Some pathomechanisms like parasite sequestration in small vessels and capillary leakage associated with the risk of effusions and oedema are malaria-specific, while other features such as disturbed microcirculation and lactic acidosis as well as excessive production of pro-inflammatory cytokines, are similar in malaria and bacterial sepsis [8,9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.