Abstract
We studied the relationship between sediment nutrient enrichment and carbon sequestration, using the ratio of gross primary production to respiration (P/R), in a fish- farming impacted and an unaffected Mediterranean seagrass (Posidonia oceanica) ecosystem in the Aegean Sea, Greece. Carbon (C), nitrogen (N) and phosphorus (P) sedimentation, nutrient pools in sediment and dissolved nutrients in pore water were significantly and posi- tively intercorrelated, indicating close linkage between sedimentation and sediment nutrient pools in seagrass meadows. C, N and P sediment pools were significantly enhanced in the impacted meadow throughout the year, even during winter when fish farming activity was low. In the impacted sediment, the increase in C and N was higher than P, reflecting a faster remineralization and uptake of P than C and N. The ecosystem P/R ratio decreased exponen- tially with sediment nutrient enrichment. Threshold values are given for C, N and P sedimen- tation rates and sediment pools, and for N and P concentrations in pore waters, after which P/R ratio in the seagrass meadow decreases below 1, indicating a shift from autotrophy to heterotrophy with sediment nutrient enrichment. Such a regime shift indicates a loss of storage capacity of the seagrass ecosystem, jeopardizing the key role of P. oceanica as a carbon sink in the Mediterranean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.