Abstract
The application of spatial Cliff–Ord models requires information about spatial coordinates of statistical units to be reliable, which is usually the case in the context of areal data. With micro-geographic point-level data, however, such information is inevitably affected by locational errors, that can be generated intentionally by the data producer for privacy protection or can be due to inaccuracy of the geocoding procedures. This unfortunate circumstance can potentially limit the use of the spatial autoregressive modelling framework for the analysis of micro data, as the presence of locational errors may have a non-negligible impact on the estimates of model parameters. This contribution aims at developing a strategy to reduce the bias and produce more reliable inference for spatial models with location errors. The proposed estimation strategy models both the spatial stochastic process and the coarsening mechanism by means of a marked point process. The model is fitted through the maximisation of a doubly-marginalised likelihood function of the marked point process, which cleans out the effects of coarsening. The validity of the proposed approach is assessed by means of a Monte Carlo simulation study under different real-case scenarios, whereas it is applied to real data on house prices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.