Abstract

BackgroundMitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD). Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined.Methodology/Principal FindingsUsing DJ-1 loss of function cellular models from knockout (KO) mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2.Conclusions/SignificanceWe show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinson's disease.

Highlights

  • The identification of genetic causes of Parkinson’s disease (PD) only ten years ago allowed first insights into the molecular mechanisms leading to neurodegeneration in this common movement disorder

  • These results clearly demonstrate decreased endogenous oxidative phosphorylation and diminished uncoupled respiration of DJ-1 KO cells compared to WT controls in the presence of endogenous substrates plus the added complex I-dependent substrate pyruvate

  • This hypothesis was further emphazised by the identification of nuclear genes mutated in familial forms of PD that are directly linked to mitochondrial function, i.e. Parkin, PINK1 and DJ-1 [10,43,44]

Read more

Summary

Introduction

The identification of genetic causes of Parkinson’s disease (PD) only ten years ago allowed first insights into the molecular mechanisms leading to neurodegeneration in this common movement disorder. These mechanisms include the pathological misfolding of disease-related proteins, disturbed ubiquitin-mediated protein degradation pathways and the accumulation of intraneuronal protein aggregates in affected brain areas, known as Lewy bodies [1]. The identification of PD-specific mutations in nuclear genes encoding mitochondrial proteins provided the first genetic link to the variety of biochemical findings implicating a disturbed mitochondrial function in PD pathogenesis [2,3,4]. A critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call