Abstract

Goal-directed attention involves the selective processing of behaviorally relevant sensory information. This selective processing is thought to be supported by glutamatergic and noradrenergic systems. Pharmacotherapies that simultaneously target these systems could therefore be effective treatments for impaired attention. We first tested an N-methyl-D-aspartate (NMDA) receptor co-agonist (D-serine) for effects on attention (processing speed and attentional lapses). NMDA receptor activation is thought to support noradrenergic effects on sensory processing; therefore, we tested a combination treatment comprising D-serine and a norepinephrine reuptake inhibitor (atomoxetine). D-serine was first tested in rats performing a two-choice visuospatial discrimination task. Combination treatments comprising relatively low doses of D-serine and atomoxetine were then tested in a separate group. In experiment 1, D-serine reduced the skew of initiation time (IT) distributions (IT devmode) at the highest dose tested (300 mg/kg). In experiment 2, low-dose D-serine (125 mg/kg) had no effect, while low-dose atomoxetine (0.3 mg/kg) reduced IT devmode and slowed movement speed. Importantly, the combination of these relatively low doses of D-serine and atomoxetine reduced IT devmode more than either drug alone without further slowing movement speed. IT devmode is thought to reflect attentional lapses; therefore, D-serine's effects on IT devmode suggest that NMDA receptors are involved in the preparatory deployment of attention. Greater effects following a combination of D-serine and atomoxetine suggest that preparatory attention can be facilitated by targeting glutamatergic and noradrenergic systems simultaneously. These results could inform the development of improved treatments for individuals with ADHD who experience abnormally high attentional lapses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call