Abstract

We report a dramatic suppression of argon bubble formation in oxide dispersion strengthened steels through a high-energy mechanical alloying route. The volume fraction of argon bubbles trapped at the surface of the oxide particles is greatly reduced from 2.1×10−3 to 1.4×10−4%, when the milling energy input rate is increased from 20 to 190kJ/g∙hit. It is found that the higher milling energy, associated with a reduction of milling time, yields reduced argon contamination of the ball-milled powders, leading to enhanced microstructural homogeneity in consolidated oxide dispersion strengthened steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.