Abstract

Reversal learning deficits are a feature of many human psychopathologies and their associated animal models and have recently been shown to involve the 5-HT(2C) receptor (5-HT(2C)R). Successful reversal learning can be reduced to two dissociable cognitive mechanisms, to dissipate associations of previous positive (opposed by perseverance) and negative (opposed by learned non-reward) valence. This study aims to explore the effect of reducing activity at the 5-HT(2C)R on the cognitive mechanisms underlying spatial reversal learning in the mouse. Experiment 1 used the 5-HT(2C)R antagonist SB242084 (0.5 mg/kg) in a between-groups serial design, experiment 2 used 5-HT(2C)R KO mice in a repeated measures design. Animals initially learned to discriminate between two lit nosepoke holes. This was followed by three conditions; (1) full reversal, where contingencies reversed; (2) perseverance, where the previous CS+ became CS- and the previous CS- was replaced by a novel CS+; (3) learned non-reward, where the previous CS- became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 treated and 5-HT(2C)R KO mice showed enhanced reversal learning seen as a decrease in trials, correct responses, and omissions to criterion in the full reversal condition. Similar effects were observed in the learned non-reward condition but SB242084 treated and 5-HT(2C)R KO mice did not differ from controls in the perseverance condition. SB242084 treated, but not 5-HT(2C)R KO mice, showed decreases in all latency indices in every condition. Reducing activity at the 5-HT(2C)R facilitates reversal learning in the mouse by reducing the influence of previously non-rewarded associations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.