Abstract
Li-ion batteries (LiBs) are accurately estimated under varying operating conditions and external influences using extended Kalman filtering (EKF). Estimating the state of charge (SOC) is essential for enhancing battery efficiency, though complexities and unpredictability present obstacles. To address this issue, the paper proposes a second-order resistance-capacitance (RC) battery model and derives the EKF algorithm from it. The EKF approach is chosen for its ability to handle complex battery behaviors. Through extensive evaluation using a Simulink MATLAB program, the proposed EKF algorithm demonstrates remarkable accuracy and robustness in SOC estimation. The root mean square error (RMSE) analysis shows that SOC estimation errors range from only 0.30% to 2.47%, indicating substantial improvement over conventional methods. These results demonstrate the effectiveness of an EKF-based approach in overcoming external influences and providing precise SOC estimations to optimize battery management. In addition to enhancing battery performance, the results of the study may lead to the development of more reliable energy storage systems in the future. This will contribute to the wider adoption of LiBs in various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.