Abstract

The emission lines of strongly confined (211)B InAs/GaAs quantum dots (QDs), embedded in short-period GaAs/AlAs superlattices, are thoroughly characterized by a range of single-dot spectroscopy techniques, including cross correlation photon-counting measurements. Contrary to what is expected for a piezoelectric QD system, the single-dot biexciton line is found redshifted with respect to the exciton one by as many as 6 meV. This comes in striking contrast to previous reports on the same QD system, without additional confinement, where the biexciton lines always showed up at higher energies than the exciton, by 4–13 meV. In addition, two charged exciton lines are identified for the first time in a piezoelectric InAs-based QD. A positively charged (Χ+) and a negatively charged (Χ−) trion line are observed 1.5 and 7.5 meV below the neutral exciton line, respectively. Our results pave the way to an enhanced understanding of the excitonic transitions in (211)B QDs and highlight the possible role of strong confinement and accompanying correlation effects as a means to tailor the transition energies of multi-particle states in semiconductor QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.