Abstract

We present constraints on local primordial non-Gaussianity (PNG), parametrized through fNLloc, using the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample. We measure and analyze the anisotropic clustering of the quasars in Fourier space, testing for the scale-dependent bias introduced by primordial non-Gaussianity on large scales. We derive and employ a power spectrum estimator using optimal weights that account for the redshift evolution of the PNG signal. We find constraints of −51<fNLloc<21 at 95% confidence level. These are among the tightest constraints from Large Scale Structure (LSS) data. Our redshift weighting improves the error bar by 15% in comparison to the unweighted case. If quasars have lower response to PNG, the constraint degrades to −81<fNLloc<26, with a 40% improvement over the standard approach. We forecast that the full eBOSS dataset could reach σfNLloc≃ 5–8 using optimal methods and full range of scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.