Abstract
In this work we use the property that, on average, star formation rate increases with redshift for objects with the same mass – the so called galaxy main sequence – to measure the redshift of galaxy clusters. We use the fact that the general galaxy population forms both a quenched and a star-forming sequence, and we locate these ridges in the SFR–M⋆ plane with galaxies taken from the Sloan Digital Sky Survey in discrete redshift bins. We fitted the evolution of the galaxy main sequence with redshift using a new method and then subsequently apply our method to a suite of X-ray selected galaxy clusters in an attempt to create a new distance measurement to clusters based on their galaxy main sequence. We demonstrate that although it is possible in several galaxy clusters to measure the main sequences, the derived distance and redshift from our galaxy main sequence fitting technique has an accuracy of σz = ±0.017 ⋅ (z + 1) and is only accurate up to z ≈ 0.2.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.