Abstract

The redox-active tetrathiafulvalene (TTF) is a good electron donor, and porphyrin is highly delocalized in cyclic pi-conjugated systems. The direct combination of the two interesting building units into the same molecule provides an intriguing molecular system for designing nonlinear optical (NLO) molecular materials. In the present paper, the second-order NLO properties of a series of monoTTF-porphyrins and metalloporphyrins have been calculated by density functional theory (DFT) combined with the finite field (FF) method. Our calculations show that these compounds possess considerably large static first hyperpolarizabilities, approximately 400 x 10(-30) esu. Since the TTF unit is able to exist in three different stable redox states (TTF, TTF(*+), and TTF(2+)), the redox switching of the NLO response of the zinc(II) derivative of monoTTF-metalloporphyrin has been studied, and a substantial enhancement in static first hyperpolarizability has been obtained in its oxidized species according to our DFT-FF calculations. The beta values of one- and two-electron-oxidized species are 3.6 and 8.7 times as large as that of the neutral compound, especially for two-electron-oxidized species, with a value of 3384 x 10(-30) esu. This value is about 3 times that for a push-pull metalloporphyrin, which has an exceptionally large hyperpolarizability among reported organic NLO chromophores. Meanwhile, to give a more intuitive description of band assignments of the electron spectrum and trends in NLO behavior of these compounds, the time-dependent (TD)DFT method has been adopted to calculate the electron spectrum. The TDDFT calculations well-reproduce the soret band and Q-type bands of the monoTTF-porphyrin, and these absorption bands can be assigned to the pi --> pi* transition of the porphyrin core. On the other hand, the oxidized process significantly affects the geometrical structures of the TTF unit and porphyrin ring, and the two-electron-oxidized species has a planar TTF unit and a high conjugative porphyrin ring. This effect reduces the excited energy, changes the CT feature, and thus enhances its static first hyperpolarizability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.