Abstract

Novel redox-responsive polyphosphate nanosized assemblies based on amphiphilic hyperbranched multiarm copolyphosphates (HPHSEP-star-PEP(x)) with backbone redox-responsive, good biocompatibility, and biodegradability simultaneously have been designed and prepared successfully. The hydrophobic core and hydrophilic multiarm of HPHSEP-star-PEP(x) are composed of hyperbranched and linear polyphosphates, respectively. Benefiting from the amphiphilicity, HPHSEP-star-PEP(x) can self-assemble into spherical micellar nanoparticles in aqueous media with tunable size from about 70 to 100 nm via adjusting the molecular weight of PEP multiarm. Moreover, HPHSEP-star-PEP(x) micellar structure can be destructed under reductive environment and result in a triggered drug release behavior. The glutathione-mediated intracellular drug delivery was investigated against a HeLa human cervical carcinoma cell line, and the results indicate that doxorubicin-loaded (DOX-loaded) HPHSEP-star-PEP(x) micelles show higher cellular proliferation inhibition against glutathione monoester pretreated HeLa cells than that of the nonpretreated ones. In contrast, the DOX-loaded micelles exhibit lower inhibition against buthionine sulfoximine pretreated HeLa cells. These results suggest that such redox-responsive polyphosphate micelles can rapidly deliver anticancer drugs into the nuclei of tumor cells enhancing the inhibition of cell proliferation and provide a favorable platform to construct excellent drug delivery systems for cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.