Abstract
Hybrid mesoporous silica nanoparticles (MSNs) modified with polymer polyethylene glycol (PEG) through the biodegradable disulfide bonds were prepared to achieve ‘on demand’ drug release. In this system, PEG chains were chosen as the representative gatekeepers that can block drugs within the mesopores of MSNs. After the addition of glutathione (GSH), the gatekeepers were removed from the pore outlets of MSNs, followed by the release of encapsulated drugs. In this research, the effects of grafting density of gatekeepers on the drug release and biocompatibility of silica carriers were also investigated. First, PEG modified MSNs were prepared by the condensation reaction between the carboxyl groups of MSN and the hydroxyl of PEG. The structure of the resultant MSN-SS-PEG was characterized by transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms analysis and Fourier transform infrared spectroscopy (FTIR). Rhodamine B (RhB) as the model drug was loaded into MSNs. The in vitro assay results indicated that RhB was released rapidly after the addition of 10mM GSH; M1-SS-PEG had the best capping efficiency compared with M0.5 and M1.5 groups. Moreover, hemolysis assay, serum protein adsorption and cell viability test indicated that with the increase of PEG grafting density, the biocompatibility of silica carriers increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.