Abstract

A novel redox-responsive hollow mesoporous silica (HMS) was constructed by host–guest interaction between β-cyclodextrin modified hollow mesoporus silica nanoparticles (HMS@β-CD) and the ferrocene-containing amphiphilic block copolymer PEG-b-PMAFc (PPFc), the prepared HMS@β-CD@PPFc system was used to control drug delivery in targeted cancer therapy through redox stimulus. The self-assembled morphology was investigated by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Intracellular localization of DOX-loaded HMS@β-CD@PPFc in A549 cells was further investigated by confocal laser scanning microscopy (CLSM), and the results indicated that DOX-loaded HMS@β-CD@PPFc was ingested by A549 cells effectively. Furthermore, the redox agent H2O2 was used to trigger the release of DOX. The cytotoxicity evaluated by MTT method indicated that HMS@β-CD@PPFc had good biocompatibility and was promising as the drug carrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.