Abstract

Using potentiometric titrations, two protons were found to participate in the redox-Bohr effect observed for cytochrome c3 from Desulfovibrio vulgaris (Hildenborough). Within the framework of the thermodynamic model previously presented, this finding supports the occurrence of a concerted proton-assisted 2e– step, ideally suited for the coupling role of cytochrome c3 to hydrogenase. Furthermore, at physiological pH, it is shown that when sulfate-reducing bacteria use H2 as energy source, cytochrome c3 can be used as a charge separation device, achieving energy transduction by energising protons which can be left in the acidic periplasmic side and transferring deenergised electrons to sulfate respiration. This mechanism for energy transduction, using a full thermodynamic data set, is compared to that put forward to explain the proton-pumping function of cytochrome c oxidase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.