Abstract

The presence of dissolved organic matter (DOM) is known to inhibit the degradation of trace organic contaminants (TrOCs) in SO4•--based advanced oxidation processes (AOPs) due to filtering of the photochemically active light and radical scavenging effects. This study revealed an unexpected contribution for DOM in the degradation of nitroimidazoles (NZs) in the UV/persulfate AOP. The apparent second-order rate constants of NZs with SO4•- increased by 2.05 to 4.77 times in the presence of different DOMs. The increments were linearly related to the total electron capacity of DOM. Quinone and polyphenol moieties were found to play a dominant role. The reactive species generated from SO4•-'s oxidation of DOM, including semiquinone radical (SQ•-) and superoxide (O2•-), were found to react with NZs via Michael addition and O2•- addition. The second-order rate constants of tinidazole with SQ•- is determined to be (5.69 ± 0.59) × 106 M-1 s-1 by laser flash photolysis. Reactive species potentially generated from DOM may be considered in designing processes for the abatement of different types of TrOCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.