Abstract

The reaction of digallane (dpp-bian)Ga-Ga(dpp-bian) (2) (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with allyl chloride (AllCl) proceeded by a two-electron oxidative addition to afford paramagnetic complexes (dpp-bian)Ga(η1 -All)Cl (3) and (dpp-bian)(Cl)Ga-Ga(Cl)(dpp-bian) (4). Treatment of complex 4 with pyridine induced an intramolecular redox process, which resulted in the diamagnetic complex (dpp-bian)Ga(Py)Cl (5). In reaction with allyl bromide, complex 2 gave metal- and ligand-centered addition products (dpp-bian)Ga(η1 -All)Br (6) and (dpp-bian-All)(Br)Ga-Ga(Br)(dpp-bian-All) (7). The reaction of digallane 2 with Ph3 SnNCO afforded (dpp-bian)Ga(SnPh3 )2 (8) and (dpp-bian)(NCO)Ga-Ga(NCO)(dpp-bian) (9). Treatment of GaCl3 with (dpp-bian)Na in diethyl ether resulted in the formation of (dpp-bian)GaCl2 (10). Diorganylgallium derivatives (dpp-bian)GaR2 (R=Ph, 11; tBu, 14; Me, 15; Bn, 16) and (dpp-bian)Ga(η1 -All)R (R=nBu, 12; Cp, 13) were synthesized from complexes 3, 10, Bn2 GaCl, or tBu2 GaCl by salt metathesis. The salt elimination reaction between (dpp-bian)GaI2 (17) and tBuLi was accompanied by reduction of both the metal and the dpp-bian ligand, which resulted in digallane 2 as the final product. Similarly, the reaction of complex 10 with MentMgCl (Ment=menthyl) proceeded with reduction of the dpp-bian ligand to give the diamagnetic complex [(dpp-bian)GaCl2 ][Mg2 Cl3 (THF)6 ] (18). Compounds 11, 12, 13, 15, and 16 were thermally robust, whereas compound 14 decomposed when heated at reflux in toluene to give complex (dpp-bian-tBu)GatBu2 (19). Both complexes 7 and 19 contain R-substituted dpp-bian ligand: in the former compound the allyl group was attached to the imino-carbon atom, whereas in complex 19, the tBu group was situated on the naphthalene ring. Crystal structures of complexes 3, 8, 9, 10, 13, 14, 18, and 19 were determined by single-crystal X-ray analysis. The presence of dpp-bian radical anions in 3, 6, 8, and 10-16 was determined by ESR spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.