Abstract
Molecules which change their structures significantly and reversibly upon an oxidation or reduction process have potential as future components of smart materials. A prerequisite for such an application is that the molecules should undergo the redox-coupled transformation within a reasonable electrochemical window and lock into stable redox states. Sodium phosphaethynolate reacts with two equivalents of dicyclohexylcarbodiimide (DCC) to yield an anionic, imino-functionalized 1,3,5-diazaphosphinane [3 a](-). The oxidation of this anion with elemental iodine causes an intramolecular rearrangement reaction to give a bicyclic 1,3,2-diazaphospholenium cation [6](+). This umpolung of electronic properties from non-aromatic to highly aromatic is reversible, and the cation [6](+) is reduced with elemental magnesium to reform the 1,3,5-diazaphosphinanide anion [3 a](-). Theoretical calculations suggest that phosphinidene species are involved in the rearrangement processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.