Abstract

A strategy for a redox-activatable heavy-atom-free photosensitizer (PS) based on thiolated naphthalimide has been demonstrated. The PS exhibits excellent reactive oxygen species (ROS) generation in the monomeric state. However, when encapsulated in a disulfide containing bioreducible amphiphilic triblock copolymer aggregate (polymersome), the PS exhibits aggregation in the confined hydrophobic environment, which results in a smaller exciton exchange rate between the singlet and triplet excited states (TDDFT studies), and consequently, the ROS generation ability of the PS was almost fully diminished. Such a PS (in the dormant state)-loaded redox-responsive polymersome showed excellent cellular uptake and intracellular release of the PS in its active form, which enabled cell killing upon light irradiation due to ROS generation. In a control experiment involving aggregates of a similar block copolymer, but lacking the bioreducible disulfide linkage, no intracellular reactivation of the PS was noticed, highlighting the importance of stimuli-responsive polymer assemblies in the area of targeted photodynamic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call