Abstract

Artificial metalloenzymes that contain protein-anchored synthetic catalysts are attracting increasing interest. An exciting, but still unrealized advantage of non-covalent anchoring is its potential for reversibility and thus component recycling. Here we present a siderophore–protein combination that enables strong but redox-reversible catalyst anchoring, as exemplified by an artificial transfer hydrogenase (ATHase). By linking the iron(iii)-binding siderophore azotochelin to an iridium-containing imine-reduction catalyst that produces racemic product in the absence of the protein CeuE, but a reproducible enantiomeric excess if protein bound, the assembly and reductively triggered disassembly of the ATHase was achieved. The crystal structure of the ATHase identified the residues involved in high-affinity binding and enantioselectivity. While in the presence of iron(iii), the azotochelin-based anchor binds CeuE with high affinity, and the reduction of the coordinated iron(iii) to iron(ii) triggers its dissociation from the protein. Thus, the assembly of the artificial enzyme can be controlled via the iron oxidation state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.