Abstract

Diquinone-based resorcin[4]arene cavitands that open to a kite and close to a vase form upon changing their redox state, thereby releasing and binding guests, have been prepared and studied. The switching mechanism is based on intramolecular H-bonding interactions that stabilize the vase form and are only present in the reduced hydroquinone state. The intramolecular H-bonds were characterized using X-ray, IR, and NMR spectroscopies. Guests were bound in the closed, reduced state and fully released in the open, oxidized state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.