Abstract

In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

Highlights

  • Plasma is generated by substantial energy input to a gas, thereby creating a “fourth state of matter” [1]

  • We investigated whether exposure to cold physical plasma affected THP-1 cell viability, metabolic activity, and function

  • Using THP-1 monocytes as a model, we investigated the oxidative challenge provided by the plasma to these cells

Read more

Summary

Introduction

Plasma is generated by substantial energy input to a gas, thereby creating a “fourth state of matter” [1]. Apart from naturally occurring plasma, for example, lightning, fire, or Aurelia borealis, plasma is created artificially For plasma jets, such as the one used in the present study (kiNPen), the reactive components of the plasma can be delivered directly and in a controlled manner to cells and tissues without inducing thermal damage [3]. In the device (or kiNPen), the noble gas argon is excited at a central high voltage electrode (AC, several kV, ≈1 MHz). This creates nonequilibrium plasma that contains hot and reactive electrons and relatively cold argon ions in a bulk of nonionized gas atoms that govern the overall temperature [4]. This may be of therapeutic benefit in pathological skin conditions, as first small-scale clinical studies supported the notion that chronic wounds displayed an improved healing signature after exposure to ROS/RNS generating plasma [7,8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call