Abstract

Photosystem II reaction centers in plants, algae, and cyanobacteria are susceptible to damage by excess light that irreversibly impairs activity and eventually results in the proteolytic degradation of at least one of the core proteins. The sequence of events and underlying molecular mechanisms that lead to photoinhibition are poorly understood. Here we present evidence for a one-electron redox component that exerts strong control over the rate of photosystem II photoinhibition in isolated thylakoid membranes. Monitoring the impact of various doses of visible light on the rate of water oxidation and on the variable chlorophyll fluorescence, we found that reduction of the redox component increased the rate of photoinhibition >15-fold. Anaerobic potentiometric titrations of the rate of photoinhibition revealed a redox component with a midpoint potential near 20 mV at pH 7.5. The titrations fit a Nernst equation for a one-electron reaction and were nearly pH independent. Although we have not yet identified the chemical species being titrated, a likely candidate is lowpotential cytochrome b-559. We believe this observation reveals an electron transfer pathway in photosystem II that functions to protect the reaction center against excess light energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.