Abstract

Cytochrome c is known to play central role in apoptosis. Here, it is shown that ferricytochrome c, but not ferrocytochrome c is able to directly induce the aggregation of rat liver mitochondria, similar to the effect caused by magnesium ions at high concentrations. The aggregation was revealed by a decrease in light dispersion of mitochondrial suspension and it was confirmed by the optical microscopy. In the medium containing NADH and cytochrome c, mitochondrial aggregation was initiated only after exhaustion of NADH leading to oxidation of cytochrome c. The aggregation induced by 30 μM ferricytochrome c, but not by 5 mM MgCl(2), was completely inhibited by 30-100 μM ferricyanide, thus indicating that ferricyanide-cytochrome c specific interaction prevents mitochondrial aggregation. After completion of the aggregation caused by ferricytochrome c, this effect cannot be readily reversed by subsequent reduction of cytochrome c. The aggregation induced by ferricytochrome c and/or magnesium ions explains masking of the external NADH-oxidase activity of mitochondria in vitro reported in the literature. This new cytochrome c redox state-dependent phenomenon might also be involved in more complex mechanisms controlling aggregation (clustering) of mitochondria in vivo under the influence of pro-apoptotic factors and requires further study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call