Abstract

Biological electron transfer reactions between metal cofactors are critical to many essential processes within the cell. Duplex DNA is, moreover, capable of mediating the transport of charge through its π-stacked nitrogenous bases. Increasingly, [4Fe4S] clusters, generally redox-active cofactors, have been found to be associated with enzymes involved in DNA processing. DNA-binding enzymes containing [4Fe4S] clusters can thus utilize DNA charge transport (DNA CT) for redox signaling to coordinate reactions over long molecular distances. In particular, DNA CT signaling may represent the first step in the search for DNA lesions by proteins containing [4Fe4S] clusters that are involved in DNA repair. Here we describe research carried out to examine the chemical characteristics and biological consequences of DNA CT. We are finding that DNA CT among metalloproteins represents powerful chemistry for redox signaling at long range within the cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.