Abstract

Cancer cells utilize rapidly elevated cellular antioxidant programs to accommodate chemotherapy-induced oxidative stress; however, the underlying mechanism remains largely unexplored. Here we screen redox-sensitive effectors as potential therapeutic targets for colorectal cancer (CRC) treatment and find that cyclophilin A (CypA) is a compelling candidate. Our results show that CypA forms an intramolecular disulfide bond between Cys115 and Cys161 upon oxidative stress and the oxidized cysteines in CypA are recycled to a reduced state by peroxiredoxin-2 (PRDX2). Furthermore, CypA reduces cellular reactive oxygen species levels and increases CRC cell survival under insults of H2O2 and chemotherapeutics through a CypA-PRDX2-mediated antioxidant apparatus. Notably, CypA is upregulated in chemoresistant CRC samples, which predicts poor prognosis. Moreover, targeting CypA by cyclosporine A exhibits promising efficacy against chemoresistant CRC when combined with chemotherapeutics. Collectively, our findings highlight CypA as a component of cellular noncanonical antioxidant defense and as a potential druggable therapeutic target to ameliorate CRC chemoresistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call