Abstract

Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD+ was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.