Abstract

We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.