Abstract
The development of advanced gene delivery carriers with stimuli-responsive release manner for tumor therapeutics is desirable, since they can exclusively release the therapeutic gene via their structural changes in response to the specific stimuli of the target site. Moreover, interactions between macrophages and drug delivery systems (DDSs) seriously impair the treatment efficiency of DDSs, thus macrophages uptake inhibition would to some extent improve the intracellular uptake of DDSs in tumor cells. Herein, a PEGylated redox-responsive gene delivery system was developed for effective cancer therapy. PEG modified glycolipid-like polymer (P-CSSO) was electrostatic interacted with p53 to form P-CSSO/p53 complexes, which exhibited an enhanced redox sensitivity in that the disulfide bond was degraded and the rate the plasmid released from P-CSSO was 2.29-fold that of nonresponsive platform (P-CSO-SA) in 10 mM levels of glutathione (GSH). PEGylation could significantly weaken macrophages uptake, while enhance the accumulation of P-CSSO in tumor cells both in vitro and in vivo. Compared with nonresponsive complexes (P-CSO-SA/p53) (59.2%) and Lipofectamine™ 2000/p53 complexes (52.0%), the tumor inhibition rate of P-CSSO/p53 complexes (77.1%) significantly increased, which was higher than CSSO/p53 complexes (69.9%). The present study indicates that tumor microenvironment sensitive and macrophages uptake suppressive P-CSSO/p53 is a powerful in vivo gene delivery system for enhanced anticancer therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.