Abstract

CRISPR/Cas9-based genome editing tools have enormous potential for the development of various therapeutic treatments due to their reliability and broad applicability. A central requirement of CRISPR/Cas9 is the efficient intracellular delivery of the editing machinery, which remains a well-recognized challenge, notably to deliver Cas9 in its native protein form. Herein, a phase-separating peptide with intracellular redox-triggered release properties is employed to encapsulate and deliver all three forms of CRISRP-Cas9 editing machinery, namely, pDNA, mRNA/sgRNA, and the ribonucleoprotein complex. These modalities are readily recruited within peptide coacervates during liquid-liquid phase separation by simple mixing and exhibit higher transfection and editing efficiency compared to highly optimized commercially available transfection reagents currently used for genome editing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call