Abstract

Interest in the design and development of artificial molecular muscles has inspired scientists to pursue new stimuli-responsive systems capable of exhibiting a physical and mechanical change in a material in response to one or more external environmental cues. Over the past few decades, many different types of stimuli have been investigated as a means to actuate materials. In particular, materials that respond to reduction and oxidation of their constituent molecular components have shown great promise on account of their ability to be activated either chemically or electrochemically. Here, we introduce a novel redox-responsive mechanism of actuation in hydrogels by describing a systematic investigation into the radical-based self-assembly of a series of unimolecular viologen-based oligomeric links, present at only 5 mol % of the polymer linkers in a three-dimensional network. The actuation process results in an overall reversible contraction of a family of hydrogels, down to 35% of their original volume ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call