Abstract

The ubiquitin-proteasome pathway (UPP) regulates critical cell processes, including the cell cycle, cytokine-induced gene expression, differentiation, and cell death. Recently we demonstrated that this pathway responds to oxidative stress in mammalian cells and proposed that activities of ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzymes (E2s) are regulated by cellular redox status (i.e., GSSG:GSH ratio). To test this hypothesis, we altered the GSSG:GSH ratio in retinal pigment epithelial cells with the thiol-specific oxidant, diamide, and assessed activities of the UPP. Treatment of cells with diamide resulted in a dose-dependent increase in the GSSG:GSH ratio resulting from loss of GSH and a coincident increase in GSSG. Increases in the GSSG:GSH ratio from 0.02 in untreated cells to > or = 0.5 in diamide-treated cells were accompanied by dose-dependent reductions in the levels of endogenous Ub-protein conjugates, endogenous E1-ubiquitin thiol esters, and de novo ubiquitin-conjugating activity. As determined by the ability to form E1-ubiquitin and E2s-ubiquitin thiol esters, E1 and E2s were both inhibited by elevated GSSG:GSH ratios. Inhibition of E1 was associated with the formation of E1-protein mixed disulfides. Activities of E1 and E2s gradually recovered to preoxidation levels, coincident with gradual recovery of the GSSG:GSH ratio. These data support S-thiolation/dethiolation as a mechanism regulating E1 and E2 activities in response to oxidant insult. Ubiquitin-dependent proteolytic capacity was regulated by the GSSG:GSH ratio in a manner consistent with altered ubiquitin-conjugating activity. However, ubiquitin-independent proteolysis was unaffected by changes in the GSSG:GSH ratio. Potential adaptive and pathological consequences of redox regulation of UPP activities are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.