Abstract

Post-embryonic root growth relies on the proliferative activity of the root apical meristem (RAM), consisting, in part, of cells with juvenile characteristics (stem cells). It is generally, but erroneously held that the RAM indefinitely produces new cells throughout the lifespan of a plant, resulting in indeterminate root growth. On the contrary, convincing data, mainly from the lab of Thomas L. Rost, show in all species analyzed so far, including Arabidopsis, that RAM organization changes over time in parallel with both a cessation of the production of new cells, and a consequent reduction in root growth, even under optimal conditions. In addition, RAM organization evolved to become highly plastic and dynamic in response to environmental triggers (e.g. water and nutrient availability, pollutants). Under unfavourable conditions, the RAM is rapidly reorganized, and, as a result of the cessation of new cell production at the root tip, root growth is altered, and lateral root production is enhanced, thus providing the plant additional strategies to overcome the stress. It is now becoming increasingly clear that this environment-responsive developmental plasticity is linked to reactive oxygen/nitrogen species, antioxidants, and related enzymes, which form part of a complex signalling module specifically operating in the regulation of RAM functioning, in strict relationship with hormonal control of root development exerted by auxin, gibberellins and cytokinins. In turn, such redox/hormone crosstalk regulates gene expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.