Abstract

Both oxidants and antioxidants have been shown to modulate cell proliferation. We studied the effects of hydrogen peroxide and two antioxidants on the rate of proliferation of lens epithelial cells in culture. Hydrogen peroxide at concentrations higher than 32 microM caused a significant inhibition of proliferation. However, in the concentration range of 0.01-0.5 microM, hydrogen peroxide stimulated the rate of proliferation. The effect of hydrogen peroxide was dependent on the amount of cells in an individual culture well, indicating decomposition of hydrogen peroxide by cellular enzymes. In order to eliminate the possibility of decomposition of the dose of hydrogen peroxide given as a bolus, we induced continual production of hydrogen peroxide by adding glucose oxidase to the incubation medium. We found that hydrogen peroxide, generated by 1-50 microU x ml(-1) of glucose oxidase significantly increased the rate of cell proliferation. This effect was most apparent at the beginning of the exponential phase of cellular growth. Glucose oxidase alone (100-500 microU x ml(-1)) did not produce any effect. The effects of pro-oxidative hydrogen peroxide were compared with the effects of two biologically important antioxidants, alpha-tocopherol and retinol. Both antioxidants completely inhibited proliferation at concentrations of 30 microM and higher. In contrast to retinol, the effect of alpha-tocopherol was dependent on the amount of cells, indicating cellular decomposition of alpha-tocopherol. The results document the possibility of redox regulation of cellular proliferation at physiologically relevant reactant concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.